

Welcome to CartoDB Manual

Contents:

	CartoDB introduction
	What can I do with CartoDB?

	Components
	PostgreSQL

	PostGIS

	Redis

	CartoDB PostgreSQL extension

	CartoDB Editor

	Maps API

	SQL API

	Installation
	System requirements

	PostgreSQL

	GIS dependencies

	PostGIS

	Redis

	NodeJS

	SQL API

	MAPS API

	Ruby

	Editor

	Running CartoDB
	First run, setting up an user

	Running all the processes

	Configuration
	Basemaps

	Basemaps with a layer of labels

	Domainless URLs

	Configuration changes for Domainless URLs

	Limitations

	Common Data

	Separate folders

	Operations
	Creating users

	Creating organizations

	Changing Feature Flags

	Changing limits

	Exporting/Importing visualizations

	Exporting/Importing full visualizations

	Running Sync Tables

	HTTP Header Authentication

	Configuring Dataservices

Indices and tables

	Index

	Module Index

	Search Page

CartoDB introduction

CartoDB is an open source tool that allows for the storage and
visualization of geospatial data on the web.

It was built to make it easier for people to tell their stories by
providing them with flexible and intuitive ways to create maps and design
geospatial applications. CartoDB can be installed on your own server
and we also offer a hosted service at carto.com [https://carto.com].

If you would like to see some live demos, check out our
videos [http://vimeo.com/channels/cartodb] on Vimeo.
We hope you like it!

[image: Map View]

What can I do with CartoDB?

With CartoDB, you can upload your geospatial data (Shapefiles, GeoJSON,
etc) using a web form and then make it public or private.

After it is uploaded, you can visualize it in a table or on a map, search
it using SQL, and apply map styles using CartoCSS. You can even access it
using the CartoDB API OVERVIEW [https://docs.carto.com/cartodb-platform.html]
and SQL API [https://docs.carto.com/cartodb-platform/sql-api.html], or export it
to a file.

In other words, with CartoDB you can make awesome maps and build
powerful geospatial applications! Definitely check out the CartoDB
Develop [https://docs.carto.com/] for interactive examples
and code.

[image: Map View Wizard]
[image: Data View]

Components

A common CartoDB stack is powered by those components:

	PostgreSQL

	PostGIS

	Redis

	CartoDB PostgreSQL extension

	CartoDB Editor
	Service modes

	Maps API

	SQL API

PostgreSQL

PostgreSQL [http://postgresql.org] is the open source database powering CartoDB.

CartoDB uses PostgreSQL for two purposes:

	Metadata storage. This is the metadata used by the CartoDB editor. Editor models like users information, visualizations, or other metadata is stored in this database. The name and connection information of this database is specified on the Rails app_config.yml configuration file.

	User data storage. Each single user or organization in CartoDB has a individual PostgreSQL database. This database is created during the user signup process. Its database name and connection info is generated on the fly by the CartoDB application during this process. Both values are stored within the user info in the metadata database. Every user database name contains the user UUID.

Both metadata database and users databases can be hosted either in the same PostgreSQL cluster or different ones. Having both the in the same cluster is the recommended approach for small environments.
The editor only knows how to connect to metadata database. However, within every request it checks the connection info of the user database which is stored in metadata database, as described before.

At this moment CartoDB requires PostgreSQL 9.5.x version.

PostGIS

PostGIS [http://postgis.net] is the extension which adds spatial capabilities to PostgreSQL.
It allows working with geospatial types or running geospatial functions in PostgreSQL.
Is is required both on the user data clusters and the metadata cluster.

At this moment CartoDB requires PostGIS 2.2.x version.

Redis

Redis is a key-value store engine used by most components of the CartoDB application stack to store configuration and cache.

In contrast to the PostgreSQL metadata (which is used only by the CartoDB editor), the metadata stored in Redis is shared among the CartoDB editor, the SQL API, and the Maps API.

Important

Even though also used as a cache, there is also persistent data stored in Redis.
In some environments Redis is configured by default to act without persistency
(see http://redis.io/topics/persistence).

You must ensure Redis is configured properly to keep its data between restarts.

	Data is stored in separate databases inside this Redis:

	
	Database 0: Table and visualization metadata, including map styles and named maps.

	Database 3: OAuth credentials metadata.

	Database 5: Metadata about the users, including API keys and database_hosts.

At this moment CartoDB requires redis 3.x version.

CartoDB PostgreSQL extension

The CartoDB PostgreSQL extension can be found at https://github.com/CartoDB/cartodb-postgresql.

This extensions is required by all the components of CartoDB and it must be installed in the server where user databases are stored.

It provides functions and other helpers needed by the Editor, Maps and SQL APIs like:

	CartoDBfying functions which convert raw PostgreSQL tables in tables recognized by CartoDB by adding some additional columns and triggers

	Multiuser schema handling functions

	Quota helpers

	Cache helpers

	etc..

The CartoDB extension depends on PostGIS.

CartoDB Editor

The editor is the web management component of CartoDB. Within the editor you can find all the features available in CartoDB. These are some of the most significant tasks you can do with the editor:

	User management. Credentials, authorization, personal info and billing.

	Connect datasets to your CartoDB account either by importing your datasets or other ones publicly available.

	Create maps from your datasets

	Publising and permissions management of datasets and maps

	Synchronized tables management

Internally the editor is the operations core of CartoDB. It manages PostgreSQL metadata database, keep some metadata in sync with Redis, manages new datasets import queues with resque, etc..

It is developed in Ruby on Rails and like the other components of CartoDB is Open Source and you can find the source code at CartoDB/cartodb [https://github.com/CartoDB/cartodb]

You can find usage documentation at https://docs.carto.com/cartodb-editor.html

Although you can chechout any branch of the repository most of them are usually work in progress that is not guaranteed to work. In order to run a production ready Editor service you need to use master branch.

Service modes

The code of CartoDB editor needs to run in two different modes. HTTP server mode and background jobs mode.

The HTTP server processes the http requests sent to the service and returns a response synchronously. Any ruby rack server can be used to start the editor in this mode. Some examples of rack servers are mongrel, webrick, thin or unicorn.

The background jobs mode is started with resque [https://github.com/resque/resque]. In this mode the service keep polling some redis keys in order to find pending background jobs. When it finds one, it processes it and change the state of the job in redis. CartoDB uses this mode for different type of jobs like datasets imports or synchronized tables.

Maps API

The Maps API provides a node.js based API that allows you to generate maps based on data hosted in your CartoDB account by applying custom SQL and CartoCSS to the data

Like the other components of CartoDB is Open Source and you can find the source code at CartoDB/Windshaft-cartodb [https://github.com/CartoDB/windshaft-cartodb]

You can find usage documentation at https://docs.carto.com/cartodb-platform/maps-api.html

Although you can chechout any branch of the repository most of them are usually work in progress that is not guaranteed to work. In order to run a production ready Maps API service you need to use master branch.

SQL API

The SQL API provides a node.js based API for running SQL queries against CartoDB.

Like the other components of CartoDB is Open Source and you can find the source code at CartoDB/CartoDB-SQL-API [http://github.com/cartodb/cartodb-sql-api]

You can find usage documentation at https://docs.carto.com/cartodb-platform/sql-api.html.

Although you can chechout any branch of the repository most of them are usually work in progress that is not guaranteed to work. In order to run a production ready SQL API service you need to use master branch.

Installation

Warning

CartoDB is guaranteed to run without any issue in Ubuntu 12.04 x64. This documentation describes the process to install CartoDB in this specific OS version.

However this doesn’t mean that it won’t work with other Operating Systems or other Ubuntu. There are also many successful installations on Amazon EC2, Linode, dedicated instances and development machines running OS X and Ubuntu 12.04+.

System requirements

Besides the OS version mentioned in the introduction, there are some system requirements needed before starting with the installation of the stack. Also this process assumes that you have enough permissions in the system to run successfully most part of the commands of this doc.

System locales

Installations assume you use UTF8. You can set the locale by doing this:

sudo locale-gen en_US.UTF-8
sudo update-locale LANG=en_US.UTF-8 LC_ALL=en_US.UTF-8

APT tools

In order to easily install some packages repositories sources is suggested to install this tool:

sudo apt-get install python-software-properties

Build essentials

Although we try to maintain packaged versions of almost every part of the stack, there are some parts like gems or npm packages that need some development tools in the system in order to compile. You can install all the needed build tools by doing this:

sudo apt-get install autoconf binutils-doc bison build-essential flex

You will also need to install GCC 4.9 in order to build some Node modules later. You can install it doing this:

sudo add-apt-repository ppa:cartodb/gcc && sudo apt-get update
sudo apt-get install gcc-4.9 g++-4.9
export CC=/usr/bin/gcc-4.9
export CXX=/usr/bin/g++-4.9

GIT

You will need git commands in order to handle some repositories and install some dependencies:

sudo apt-get install git

PostgreSQL

	Add PPA repository

sudo add-apt-repository ppa:cartodb/postgresql-9.5 && sudo apt-get update

	Install client packages

sudo apt-get install libpq5 \
 libpq-dev \
 postgresql-client-9.5 \
 postgresql-client-common

	Install server packages

sudo apt-get install postgresql-9.5 \
 postgresql-contrib-9.5 \
 postgresql-server-dev-9.5 \
 postgresql-plpython-9.5

PostgreSQL access authorization is managed through pg_hba.conf configuration file, which is normally in /etc/postgresql/9.5/main/pg_hba.conf. Here it’s defined how the users created in postgresql cluster can access the server. This involves several aspects like type of authentication (md5, no password, etc..) or source IP of the connection. In order to simplify the process of the installation we are going to allow connections with postgres user from localhost without authentication. Of course this can be configured in a different way at any moment but changes here should imply changes in database access configuration of CartoDB apps.

This is the pg_hba.conf with the no password access from localhost:

local all postgres trust
local all all trust
host all all 127.0.0.1/32 trust

For these changes to take effect, you’ll need to restart postgres:

sudo service postgresql restart

	Create some users in PostgreSQL. These users are used by some CartoDB apps internally

sudo createuser publicuser --no-createrole --no-createdb --no-superuser -U postgres
sudo createuser tileuser --no-createrole --no-createdb --no-superuser -U postgres

	Install CartoDB postgresql extension. This extension contains functions that are used by different parts of the CartoDB platform, included the Editor and the SQL and Maps API.

git clone https://github.com/CartoDB/cartodb-postgresql.git
cd cartodb-postgresql
git checkout <LATEST cartodb-postgresql tag>
sudo make all install

GIS dependencies

	Add GIS PPA

sudo add-apt-repository ppa:cartodb/gis && sudo apt-get update

	Install Proj

sudo apt-get install proj proj-bin proj-data libproj-dev

	Install JSON

sudo apt-get install libjson0 libjson0-dev python-simplejson

	Install GEOS

sudo apt-get install libgeos-c1v5 libgeos-dev

	Install GDAL

sudo apt-get install gdal-bin libgdal1-dev libgdal-dev
sudo apt-get install gdal2.1-static-bin

PostGIS

	Install PostGIS

sudo apt-get install libxml2-dev
sudo apt-get install liblwgeom-2.2.2 postgis postgresql-9.5-postgis-2.2 postgresql-9.5-postgis-scripts

	Initialize template postgis database. We create a template database in postgresql that will contain the postgis extension. This way, every time CartoDB creates a new user database it just clones this template database

sudo createdb -T template0 -O postgres -U postgres -E UTF8 template_postgis
sudo createlang plpgsql -U postgres -d template_postgis
psql -U postgres template_postgis -c 'CREATE EXTENSION postgis;CREATE EXTENSION postgis_topology;'
sudo ldconfig

	Run an installcheck to verify the database has been installed properly

sudo PGUSER=postgres make installcheck # to run tests

Check https://github.com/cartodb/cartodb-postgresql for further reference

	Restart PostgreSQL after all this process

sudo service postgresql restart

Redis

Redis 3+ is needed.

	Add redis PPA

sudo add-apt-repository ppa:cartodb/redis && sudo apt-get update

	Install redis

sudo apt-get install redis-server

Warning

By default redis server is configured to not have any type of disk persistence. If stopped or restarted everything stored in redis will be lost. In CartoDB redis is not just a simple cache storage. It stores information that need to be persisted.

Make sure to have proper values of save, appendonly and appendfsync config attributes. For more information check http://redis.io/topics/persistence

NodeJS

NodeJS is required by different parts of the stack. The more significant are the Maps and SQL APIs. It’s also used to install and execute some dependencies of the editor.

	Add the PPA

sudo add-apt-repository ppa:cartodb/nodejs && sudo apt-get update

	Install NodeJS

sudo apt-get install nodejs

Note this should install both NodeJS 6.9.2 and npm 3.10.9. You can verify the installation went as expected with:

nodejs -v
npm -v

If npm version is wrong you should update it:

npm install npm@3.10.9 -g

We will also install some development libraries that will be necessary to build some Node modules:

sudo apt-get install libpixman-1-0 libpixman-1-dev
sudo apt-get install libcairo2-dev libjpeg-dev libgif-dev libpango1.0-dev

SQL API

	Download API

git clone git://github.com/CartoDB/CartoDB-SQL-API.git
cd CartoDB-SQL-API
git checkout master

	Install npm dependencies

npm install

	Create configuration. The name of the filename of the configuration must be the same than the environment you are going to use to start the service. Let’s assume it’s development.

cp config/environments/development.js.example config/environments/development.js

	Start the service. The second parameter is always the environment if the service. Remember to use the same you used in the configuration.

node app.js development

MAPS API

	Download API

git clone git://github.com/CartoDB/Windshaft-cartodb.git
cd Windshaft-cartodb
git checkout master

	Install npm dependencies

npm install

	Create configuration. The name of the filename of the configuration must be the same than the environment you are going to use to start the service. Let’s assume it’s development.

cp config/environments/development.js.example config/environments/development.js

	Start the service. The second parameter is always the environment of the service. Remember to use the same you used in the configuration.

node app.js development

Ruby

	Download ruby-install. Ruby-install is a script that makes ruby install easier. It’s not needed to get ruby installed but it helps in the process.

wget -O ruby-install-0.5.0.tar.gz https://github.com/postmodern/ruby-install/archive/v0.5.0.tar.gz
tar -xzvf ruby-install-0.5.0.tar.gz
cd ruby-install-0.5.0/
sudo make install

	Install some ruby dependencies

sudo apt-get install libreadline6-dev openssl

	Install ruby 2.2.3. CartoDB has been deeply tested with Ruby 2.2.

sudo ruby-install ruby 2.2.3

	Ruby-install will leave everything in /opt/rubies/ruby-2.2.3/bin. To be able to run ruby and gem later on, you’ll need to add the Ruby 2.2.3 bin folder to your PATH variable. It’s also a good idea to include this line in your bashrc so that it gets loaded on restart

export PATH=/opt/rubies/ruby-2.2.3/bin:$PATH

	Install bundler. Bundler is an app used to manage ruby dependencies. It is needed by CartoDB’s editor

sudo gem install bundler

	Install compass. It will be needed later on by CartoDB’s editor

sudo gem install compass

Editor

	Download the editor code

git clone --recursive https://github.com/CartoDB/cartodb.git
cd cartodb

	Install pip

sudo wget -O /tmp/get-pip.py https://bootstrap.pypa.io/get-pip.py
sudo python /tmp/get-pip.py

	Install a necessary package for python dependencies

sudo apt-get install python-all-dev

	Install dependencies

sudo apt-get install imagemagick unp zip
RAILS_ENV=development bundle install
npm install
sudo pip install --no-use-wheel -r python_requirements.txt

Warning

If this fails due to the installation of the gdal package not finding Python.h or any other header file, you’ll need to do this:

export CPLUS_INCLUDE_PATH=/usr/include/gdal
export C_INCLUDE_PATH=/usr/include/gdal
export PATH=$PATH:/usr/include/gdal

After this, re-run the pip install command. Variables can be passed to sudo if exporting them and re-running pip install doesn’t work:

sudo CPLUS_INCLUDE_PATH=/usr/include/gdal C_INCLUDE_PATH=/usr/include/gdal PATH=$PATH:/usr/include/gdal pip install --no-use-wheel -r python_requirements.txt

If gdal keeps failing, see more information here: http://gis.stackexchange.com/questions/28966/python-gdal-package-missing-header-file-when-installing-via-pip

	Add the grunt command to the PATH

export PATH=$PATH:$PWD/node_modules/grunt-cli/bin

	Install all necesary gems

bundle install

	Precompile assets. Note that the last parameter is the environment used to run the application. It must be the same used in the Maps and SQL APIs

bundle exec grunt --environment=development

	Create configuration files

cp config/app_config.yml.sample config/app_config.yml
cp config/database.yml.sample config/database.yml

	Initialize the metadata database

RAILS_ENV=development bundle exec rake db:create
RAILS_ENV=development bundle exec rake db:migrate

	Start the redis-server that allows access to the SQL and Maps APIs:

redis-server &

	Start the editor HTTP server

RAILS_ENV=development bundle exec rails server

	In a different process/console start the resque process

RAILS_ENV=development bundle exec ./script/resque

Running CartoDB

First run, setting up an user

First run, setting up first time to run your development version of CartoDB. Let’s suppose that we are going to create a development env and that our user/subdomain is going to be ‘development’

cd cartodb
export SUBDOMAIN=development

Add entries to /etc/hosts needed in development
echo "127.0.0.1 ${SUBDOMAIN}.localhost.lan" | sudo tee -a /etc/hosts

Create a development user
sh script/create_dev_user

Running all the processes

Start the resque daemon (needed for import jobs):

bundle exec script/resque

Finally, start the CartoDB development server on port 3000:

bundle exec thin start --threaded -p 3000 --threadpool-size 5

Node apps

cd cartodb-sql-api && node app.js
cd windshaft-cartodb && node app.js

You should now be able to access
`http://<mysubdomain>.localhost.lan:3000`
in your browser and login with the password specified above.

Enjoy

Configuration

In this section you can find some helpful configuration examples related with Basemaps,
Domainles Urls and Common-data.

Basemaps

The way to add/change the basemaps available in CartoDB is chaging the
config/app_config.yml. Basically you need to add a new entry called basemaps,
that entry can have different sections and each section one or more basemaps.

Each section corresponds to row in CartoDB basemap dialog. If the basemaps entry
is not present a set of default basemaps will be used (CartoDB and Stamen ones,
check the default basemaps file
https://github.com/CartoDB/cartodb/blob/master/lib/assets/javascripts/cartodb/table/default_layers.js)

Also, it’s always necessary to have a default basemap among all the confifured
ones in the app_config.yml. The way to set a basemap as default a “default”
attribute needs to be added to the basemap. There can be several basemaps in the
config with the attribute default set, however, only the first one found in the
same order than in the app_config will be used as default.

Here is an example config.yml:

basemaps:
 CartoDB:
 positron_rainbow:
 default: true # Ident with spaces not with tab
 url: 'http://{s}.basemaps.cartocdn.com/light_all/{z}/{x}/{y}.png'
 subdomains: 'abcd'
 minZoom: '0'
 maxZoom: '18'
 name: 'Positron'
 className: 'positron_rainbow'
 attribution: '© OpenStreetMap contributors © CARTO'
 dark_matter_rainbow:
 url: 'http://{s}.basemaps.cartocdn.com/dark_all/{z}/{x}/{y}.png'
 subdomains: 'abcd'
 minZoom: '0'
 maxZoom: '18'
 name: 'Dark matter'
 className: 'dark_matter_rainbow'
 attribution: '© OpenStreetMap contributors © CARTO'
 positron_lite_rainbow:
 url: 'http://{s}.basemaps.cartocdn.com/light_nolabels/{z}/{x}/{y}.png'
 subdomains: 'abcd'
 minZoom: '0'
 maxZoom: '18'
 name: 'Positron (lite)'
 className: 'positron_lite_rainbow'
 attribution: '© OpenStreetMap contributors © CARTO'

 stamen:
 toner_stamen:
 url: 'https://stamen-tiles-{s}.a.ssl.fastly.net/toner/{z}/{x}/{y}.png'
 subdomains: 'abcd'
 minZoom: '0'
 maxZoom: '18'
 name: 'Toner'
 className: 'toner_stamen'
 attribution: 'Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.'

Basemaps with a layer of labels

Basemaps can optionally add a layer with labels on top of other layers. To do so,
you should add the labels key to the basemap config, as follows:

positron_rainbow:
 default: true
 url: 'http://{s}.basemaps.cartocdn.com/light_all/{z}/{x}/{y}.png'
 subdomains: 'abcd'
 minZoom: '0'
 maxZoom: '18'
 name: 'Positron'
 className: 'positron_rainbow'
 attribution: '© OpenStreetMap contributors © CARTO'
 labels:
 url: 'http://{s}.basemaps.cartocdn.com/light_only_labels/{z}/{x}/{y}.png'

Domainless URLs

Historically, CartoDB URLs were based on a username.carto.com/PATH schema.
When Multiuser accounts were introduced, an alternate schema
organizationname.carto.com/u/username/PATH was built alongside the “classic” one.
Both schemas introduce some problems for opensource and/or custom installs of the platform,
as they require DNS changes each time a new user or organization is added.

Subdomainless urls are the answer to this problems. Modifying some configuration settings,
any CartoDB installation can be setup to work with a new schema, carto.com/user/username/PATH.

The following sections details the steps to make it work and the limitations it has.

Configuration changes for Domainless URLs

	For a default installation, app_config.yml contains this relevant values:

session_domain: '.localhost.lan'
subdomainless_urls: false

	To activate subdomainless urls, change to (notice the removed starting dot from session_domain:

session_domain: 'localhost.lan'
subdomainless_urls: true

	Non-default HTTP and HTTPs ports can also be configured here for REST API calls, with the following app_config.yml attributes:

nil|integer. HTTP port to use when building urls.
Leave empty to use default (80)
http_port:
nil|integer. HTTPS port to use when building urls.
Leave empty to use default (443)
https_port:

Remember that as with other configuration changes, Rails application must be restarted to apply them.

Limitations

If you leave the dot at session_domain having subdomainless urls, you will be forced
to always have a subdomain. Any will do, but must be present. If you remove the dot it
will work as intended without any subdomain.

When subdomainless urls are used, organizations will be ignored from the urls. In fact,
typing whatever.carto.com/user/user1 and carto.com/user/user1 is the same. The platform
will replicate the sent subdomain fragment to avoid CORS errors but no existing organization
checks will be performed. You should be able to use them, assign quota to the organization users, etc.

Common Data

This service uses the visualizations API to retrieve all the public datasets from a defined user and
serve them as importable datasets to all the users of the platform through the data library options.

All can be configured through the common_data settings section. If the base_url
option is set, this will be the base url the service is going to use to build the URL to retrieve datasets.
For example:

common_data:
 protocol: 'https'
 username: 'common-data'
 base_url: 'https://common-data.carto.com'
 format: 'shp'

Use https://common-data.carto.com as the base url to retrieve all the public datasets from that user.

This is the default behaviour in CartoDB, but if you want to use your own system and user for this purpose you
have to define the username property pointing to the user that will provide the datasets in your own instance.
The URL in this case is going to be built using your instance base url. For example if your instance base url is
http://www.example.com and the config is:

common_data:
 protocol: 'https'
 username: 'common-data-user'
 format: 'shp'

the system populates the data library with the public datasets from http://common-data-user.example.com...

The format option is used to define the format of the file generated when you are importing one datasets from
the data library. When you import a dataset it uses a stored URL to download that dataset as a file, in the format
defined in the config, and import as your own dataset.

Separate folders

Default installation keeps logs, configuration files and assets under the standard Rails folder structure: /log,
/config and /public at Rails root (your installation directory). Some installations might be interested in
moving those directories outside Rails root in order to separate code and data. You can accomplish that with symbolic
links. Nevertheless, there are three environment variables that you can use instead:

	RAILS_LOG_BASE_PATH: for example, setting it to /var/carto will use that as a base folder for log files, which
will be stored at /var/carto/log. Defaults to Rails.root.

	RAILS_CONFIG_BASE_PATH: for example, setting it to /etc/carto will make Rails open the application and database
configuration files at /etc/carto/conf/app_config.yml and /etc/carto/conf/database.yml. Defaults to Rails.root.

	RAILS_PUBLIC_UPLOADS_PATH: sets assets base path, both static and dynamic. For example, setting
it to /var/carto/assets will upload files (markers, avatars and so on) to /var/carto/assets/uploads, but it also
makes Rails server to load public assets (CSSs, JS…) from there. Defaults to app_config[:importer]["uploads_path"] or Rails.root
if it’s not present (due to backwards compatibility). If you use this variable you’ll need to do one onf the following:

	Use nginx to load the assets (recommended): making /public the nginx default root will make nginx use the proper
folders for assets, without requesting them to the Rails server: root /opt/carto/builder/embedded/cartodb/public;.

	Copy or link assets (from /<RAILS ROOT>/public) to public upload path folder.

Operations

Certain operations in the CartoDB platform can be done using rake tasks or scripts that bundle several of them together. In this section you will instructions to carry out various common operations.

Common operations in CartoDB include:

	Creating users

	Creating organizations
	Seats

	Changing Feature Flags
	Enabling a feature for all users

	Enabling a feature for a given user

	Enabling a feature for a given organization

	Disabling a feature for all users

	Disabling a feature for a given user

	Disabling a feature for a given organization

	Adding a feature flag

	Removing a feature flag

	Listing all feature flags

	Changing limits
	Change user import limits

	Increasing Twitter imports limit

	Exporting/Importing visualizations

	Exporting/Importing full visualizations

	Running Sync Tables

	HTTP Header Authentication
	Autocreation

	Configuring Dataservices
	Service provider
	Examples:

	Quotas
	Examples:

	Soft limits
	Examples:

	User database configuration (from Builder)

Creating users

Creating users in CartoDB is simple thanks to the create_dev_user script located in scripts/create_dev_user. To execute this script, be sure to be located at the cartodb repository root directory and simply run:

$./script/create_dev_user

You will be prompted to input two parameters:

	subdomain is the same as the user’s user name. This is what you will enter in the browser to access the user’s dashboard: https://<user_name>.carto.com. Set it to whatever you want the user’s user name to be.

	password this is the password the new user will use to login into their account.

Upon script completion, the new user will have been created.

Creating organizations

To create a new organization, a rake task called create_new_organization_with_owner is used. For this task to work properly, a user created beforehand must be provided as an owner (if you’re not sure how to create a user, refer to “Creating Users”).

In order to create the organization, 4 parameters must be set:

	ORGANIZATION_NAME is a short nickname for the organization, that may only contain letters, numbers and dash (-) characters. For example, ‘cartodb’ would be OK.

	ORGANIZATION_DISPLAY_NAME is a longer, more beautiful name for the organization. It may contain any characters needed. For example, ‘CartoDB Inc.’.

	ORGANIZATION_SEATS is the number of users that will be able to be created under the organization. For example, 5 seats will mean that a maximum of 5 users can belong to the organization.

	ORGANIZATION_QUOTA is the space quota in bytes that the organization is assigned. For example, 1024 * 1024 * 1024 is 1GB of quota.

	USERNAME is the user name of the owner of the organization. In our example, let’s assume that our user name is ‘manolo’.

This task is executed like:

$ bundle exec rake cartodb:db:create_new_organization_with_owner ORGANIZATION_NAME="<org_name>" ORGANIZATION_DISPLAY_NAME="<org_display_name>" ORGANIZATION_SEATS="<org_seats>" ORGANIZATION_QUOTA="<org_quota>" USERNAME="<username>"

and an example execution for creating an organization owned by ‘manolo’, named ‘CartoDB Inc.’, referred to as ‘cartodb’, with 5 seats and a 1GB quota, would be:

$ bundle exec rake cartodb:db:create_new_organization_with_owner ORGANIZATION_NAME="cartodb" ORGANIZATION_DISPLAY_NAME="CartoDB Inc." ORGANIZATION_SEATS="5" ORGANIZATION_QUOTA="1073741824" USERNAME="manolo"

Seats

You can change the viewer seats:

$ bundle exec rake cartodb:db:set_organization_viewer_seats["<org_name>","<viewer_seats>"]

Changing Feature Flags

CartoDB uses feature flags, so different users can have access to different features of CartoDB. If you would like to enable or disable feature flags to one or all users or to a given organization, you can use the rake tasks described in this section. Feature flag creation and deletion are also covered.

Enabling a feature for all users

Enabling a feature for all users is done with a rake task called enable_feature_for_all_users and it takes one parameter.

	feature_flag_name is the name of the feature flag to be enabled. For example: ‘special_dashboard’.

This task is executed like:

$ bundle exec rake cartodb:features:enable_feature_for_all_users[<feature_flag_name>]

And an example to enable the ‘special_dashboard’ feature could be:

$ bundle exec rake cartodb:features:enable_feature_for_all_users["special_dashboard"]

Enabling a feature for a given user

Enabling a feature for a given user is done with a rake task called enable_feature_for_user and it takes two parameters.

	feature_flag_name is the name of the feature flag to be enabled. For example: ‘special_dashboard’.

	user_name is the user name of the user to whom the feature flag is to be enabled. For example: ‘manolo’.

This task is executed like:

$ bundle exec rake cartodb:features:enable_feature_for_user[<feature_flag_name>,<user_name>]

Warning

Please be very careful NOT to leave a space between parameters, as it will cause rake to spit a don't know how to build task type error.

And an example to enable the ‘special_dashboard’ feature for user with user name ‘manolo’ could be:

$ bundle exec rake cartodb:features:enable_feature_for_user["special_dashboard","manolo"]

Enabling a feature for a given organization

Enabling a feature for a given organization is done with a rake task called enable_feature_for_organization and it takes two parameters.

	feature_flag_name is the name of the feature flag to be enabled. For example: ‘special_dashboard’.

	organization_name is the internal name (‘cartodb’ vs ‘CartoDB Inc.’) to which the feature flag is to be enabled. For example: ‘cartodb’.

This task is executed like:

$ bundle exec rake cartodb:features:enable_feature_for_organization[<feature_flag_name>,<organization_name``

Warning

Please be very careful NOT to leave a space between parameters, as it will cause rake to spit a don't know how to build task type error.

And an example to enable the ‘special_dashboard’ feature for organization ‘cartodb’ could be:

$ bundle exec rake cartodb:features:enable_feature_for_organization["special_dashboard","cartodb"]

Disabling a feature for all users

Disabling a feature for all users is done with a rake task called disable_feature_for_all_users and it takes one parameter.

	feature_flag_name is the name of the feature flag to be disabled. For example: ‘special_dashboard’.

This task is executed like:

$ bundle exec rake cartodb:features:disable_feature_for_all_users[<feature_flag_name>]

And an example to disable the ‘special_dashboard’ feature could be:

$ bundle exec rake cartodb:features:disable_feature_for_all_users["special_dashboard"]

Disabling a feature for a given user

Disabling a feature for a given user is done with a rake task called disable_feature_for_user and it takes two parameters.

	feature_flag_name is the name of the feature flag to be disabled. For example: ‘special_dashboard’.

	user_name is the user name of the user to whom the feature flag is to be disabled. For example: ‘manolo’.

This task is executed like:

$ bundle exec rake cartodb:features:disable_feature_for_user[<feature_flag_name>,<user_name>]

Warning

Please be very careful NOT to leave a space between parameters, as it will cause rake to spit a don't know how to build task type error.

And an example to disable the ‘special_dashboard’ feature for user with user name ‘manolo’ could be:

$ bundle exec rake cartodb:features:disable_feature_for_user["special_dashboard","manolo"]

Disabling a feature for a given organization

Disabling a feature for a given organization is done with a rake task called disable_feature_for_organization and it takes two parameters.

	feature_flag_name is the name of the feature flag to be disabled. For example: ‘special_dashboard’.

	organization_name is the internal name (‘cartodb’ vs ‘CartoDB Inc.’) to which the feature flag is to be disabled. For example: ‘cartodb’.

This task is executed like:

$ bundle exec rake cartodb:features:disable_feature_for_organization[<feature_flag_name>,<organization_name``

Warning

Please be very careful NOT to leave a space between parameters, as it will cause rake to spit a don't know how to build task type error.

And an example to disable the ‘special_dashboard’ feature for organization ‘cartodb’ could be:

$ bundle exec rake cartodb:features:disable_feature_for_organization["special_dashboard","cartodb"]

Adding a feature flag

Adding feature flags should be done using the rake task called add_feature_flag. This rake task only takes one argument:

	feature_flag_name is the name of the feature flag to be created.

This task is executed like:

$ bundle exec rake cartodb:features:add_feature_flag[<feature_flag_name>]

And an example to create a feature flag named “special_dashboard” could be:

$ bundle exec rake cartodb:features:add_feature_flag["special_dashboard"]

Removing a feature flag

Removing feature flags should be done using the rake task called remove_feature_flag. This rake task only takes one argument:

	feature_flag_name is the name of the feature flag to be removed.

This task is executed like:

$ bundle exec rake cartodb:features:remove_feature_flag[<feature_flag_name>]

And an example to remove a feature flag named “special_dashboard” could be:

$ bundle exec rake cartodb:features:remove_feature_flag["special_dashboard"]

Listing all feature flags

All existing feature flags can be listed using the rake task called list_all_features.

This task is executed like:

$ bundle exec rake cartodb:features:list_all_features

Changing limits

This section explains how to use rake tasks to change several limits for users.

Change user import limits

Using the rake task set_custom_limits_for_user, you can change import limits for a given user. The parameters this task takes are:

	user_name is the user name of the user for whom these limits will be changed.

	import_file_size is the maximum size in bytes for a file to be imported.

	table_row_count is the maximum number of rows for a file to be imported.

	concurrent_imports is the maximum number of concurrent imports that can be handled at once.

This task is executed like:

$ bundle exec rake cartodb:set_custom_limits_for_user[<user_name>,<import_file_size>,<table_row_count>,<concurrent_imports>]

and an example execution could be:

$ bundle exec rake cartodb:set_custom_limits_for_user["manolo","1048576","50000","5"]

Increasing Twitter imports limit

Increasing the Twitter imports limit should done using rake task increase_limits_for_twitter_import_users. This rake task takes no parameters. Upon execution, all users with Twitter imports enabled will have 1500MB of file size quota and a 5M row quota limit.

Exporting/Importing visualizations

You might be interested in exporting and importing visualizations because of several reasons:

	Backup purposes.

	Moving visualizations between different hosts.

	Moving visualizations between users.

	Using the same visualization with different data.

With cartodb:vizs:export_user_visualization_json task you can export a visualization to JSON, and with cartodb:vizs:import_user_visualization_json you can import it. First outputs to stdout and second reads stdin.

This example exports c54710aa-ad8f-11e5-8046-080027880ca6 visualization.

$ bundle exec rake cartodb:vizs:export_user_visualization_json['c54710aa-ad8f-11e5-8046-080027880ca6'] > c54710aa-ad8f-11e5-8046-080027880ca6.json

and this imports it into 6950b745-5524-4d8d-9478-98a8a04d84ba user, who is in another server.

$ cat c54710aa-ad8f-11e5-8046-080027880ca6.json | bundle exec rake cartodb:vizs:import_user_visualization_json['6950b745-5524-4d8d-9478-98a8a04d84ba']

Please keep in mind the following:

	Exporting has backup purposes, so it keeps ids. If you want to use this to replicate a visualization in the same server you can edit the JSON and change the ids. Any valid, distinct UUID will work.

	It does export neither the tables nor its data. Destination user should have tables with the same name than the original one for the visualization to work. You can change the table names in the JSON file if names are different.

Exporting/Importing full visualizations

Disclaimer: this feature is still in beta

You can export a complete visualization (data, metadata and map) with this command: bundle exec rake cartodb:vizs:export_full_visualization['5478433b-b791-419c-91d9-d934c56f2053']

That will generate a .carto file that you can import in any CartoDB installation just dropping the file as usual.

Running Sync Tables

If you are working with the Sync Tables feature, you must run a rake task to trigger the synchronization of the dataset. This rake retrieves all sync tables that should get synchronized, and puts the synchronization tasks at Resque:

bundle exec rake cartodb:sync_tables[true]

You might want to set up a cron so that this task is executed periodically in an automated way.

HTTP Header Authentication

With web servers such as NGINX or others you can perform SSO by making the web server add a trusted, safe header to every request sent to CartoDB. Example:

User browser – GET http://myorg.mycompany.lan/dashboard –> NGINX (adds 'sso-user-email': 'alice@myorg.com' header) –> CartoDB server

You can enable HTTP Header Authentication at CartoDB by adding the following to app_conf.yml (taken from app_conf.yml.sample):

http_header_authentication:
 header: # name of the trusted, safe header that your server adds to the request
 field: # 'email' / 'username' / 'id' / 'auto' (autodetection)
 autocreation: # true / false (true requires field to be email)

Configuration for the previous example:

http_header_authentication:
 header: 'sso-user-email'
 field: 'email'
 autocreation: false

Autocreation

Even more, if you want not only authentication (authenticating existing users) but also user creation you can turn autocreation on by setting autocreation: true. If you do so, when a user with the trusted header performs his first request his user will be created automatically. This feature requires that field is set to email, since the new user will be created with it:

	email: value of the header (alice@myorg.com).

	username: user of the email (alice).

	password: random. He can change it in his account page.

	organization: taken from the subdomain (myorg).

Configuring Dataservices

The services provided by the Dataservices SQL extension [https://github.com/CartoDB/dataservices-api]
can be manually configured for users or organizations through the following rake tasks.

The service configuration is stored in the users and organization metadata tables and reflected in the REDIS configuration database.

Service provider

For each basic service class (geocoder, routing, isolines) a provider can be assigned with the tasks:

	cartodb:services:set_user_provider[username,service,provider]

	cartodb:services:set_organization_provider[orgname,service,provider]

Valid providers are:

	mapzen for Mapzen-based third party services (Mapzen Search/Mapzen Mobility)

	here for HERE maps third party services (HERE Geocoder/Routing APIs)

	google for Google Maps services

Examples:

Set geocoder provider for user user-name to Mapzen:

rake cartodb:services:ser_user_provider['user-name',geocoder,mapzen]

Set geocoder provider for organization org-name to Mapzen:

rake cartodb:services:ser_organization_provider['org-name',geocoder,mapzen]

Quotas

Service limits can be established for individual users or organizations in the form of quotas (maximum number of requests per billing period).
The next tasks manage the configuration of the quotas.

	cartodb:services:set_user_quota[username,service,quota]

	cartodb:services:set_org_quota[orgname,service,quota]

Quota values must be non-negative integers.

Valid services are:

	geocoding for street-level (hi-res) geocoding services.

	here_isolines for general isolines/isochrones zoning services (despite the name, this does not only applies to Here-provided services).

	obs_snapshot for Data Observatory snapshot services.

	obs_general for Data Observatory general services.

	mapzen_routing for general routing services (again, not necessarily provided by Mapzen).

Examples:

Set geocoding quota for user user-name to 1000 monthly requests:

rake cartodb:services:set_user_quota['user-name',geocoder,1000]

Set geocoder quota for organization org-name to 1000 monthly requests:

rake cartodb:services:set_org_quota['org-name',geocoder,1000]

Soft limits

The service limits for a user can be configured to be soft, meaning that the user can exceed the limits (possibly incurring in additional charges).
So, when soft limits is set to false (the default) and the limits are exceeded, service requests will fail,
while if the soft limits are set to true requests will succeed (and the user will be charged for the excess).

	cartodb:services:set_user_soft_limit[username,service,soft_limit_status]

The possible values for the soft limits status is either true or false.

Valid services are, as for the quota configuration:

	geocoding for street-level (hi-res) geocoding services.

	here_isolines for general isolines/isochrones zoning services (despite the name, this does not only applies to Here-provided services).

	obs_snapshot for Data Observatory snapshot services.

	obs_general for Data Observatory general services.

	mapzen_routing for general routing services (again, not necessarily provided by Mapzen).

Examples:

Activate soft geocoding limits for user user-name:

rake cartodb:services:set_user_soft_limit['user-name',geocoder,true]

Disable soft geocoding limits for user user-name:

rake cartodb:services:set_user_soft_limit['user-name',geocoder,false]

User database configuration (from Builder)

Add the following entry to the geocoder entry of the cartodb/config/app_config.yml file:
```
api:


host: ‘localhost’
port: ‘5432’
user: ‘dataservices_user’
dbname: ‘dataservices_db’




```

In the cartodb/config/app_config.yml file, enable the desired dataservices:
```
enabled:


geocoder_internal: false
hires_geocoder: false
isolines: false
routing: false
data_observatory: true




```

Execute the rake tasks to update all the users and organizations:
`
bundle exec rake cartodb:db:configure_geocoder_extension_for_organizations['', true]
bundle exec rake cartodb:db:configure_geocoder_extension_for_non_org_users['', true]
`

Index

 _static/ajax-loader.gif

_images/map_view_wizard.png

_images/data_view.png
« [3 table_50m_urban_area options -

cartodb_id - the_geom

number geometry string number date date
1 Polygon UbanAea 5 2014-08.28T07:27:30Z 2014-08-28T07:27:332
— Custom SQL query
2 Polygon UbanAea 5 2014-08.28T07:27:30Z 2014-08-28T07:27:332
3 Polygon UbanArea 5 2014-08-26T07:27:33Z | 2014-08-26T07:27:33Z f e E ey En (SO G °
1 SELECT * FROM table 50m_urban_area
4 Polygon UbanAea 5 2014-08.28T07:27:30Z 2014-08-28T07:27:332
5 Polygon UbanAea 5 2014-08.28T07:27:30Z 2014-08-28T07:27:332
6 Polygon UbanAea 5 2014-08.28T07:27:30Z 2014-08-28T07:27:332
7 Polygon UbanAea 5 2014-08.28T07:27:30Z 2014-08-28T07:27:332
8 Polygon UbanAea 5 2014-08.28T07:27:30Z 2014-08-28T07:27:332
9 Polygon UbanAea 5 2014-08.28T07:27:30Z 2014-08-28T07:27:332
10 Polygon UbanAea 5 2014-08.28T07:27:30Z 2014-08-28T07:27:332
1 Polygon UbanAea 5 2014-08.28T07:27:30Z 2014-08-28T07:27:332
2 Polygon UbanAea 5 2ot0828T0727:392 | 201408 28To7273%7 | M
1 Polygon UbanAea 5 2014-08.28T07:27:30Z 2014-08-28T07:27:332
=
i Polygon UbanAea 5 2014-08.28T07:27:30Z 2014-08-28T07:27:332
"
15 Polygon UbanArea 5 2014-08-26T07:27:332 | 2014-08-26T07:27:332

_images/map_view.png
Basemap -
| CartoDB Light
SR Thniced angie i 7 R A =
+ } el . \
éireland | > 3 o .
-~ o
5 %},
B
[]
=
-
all
LU e
D api| @
e e e T e e e h e il CartoDB attribution,

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

